
Microservices Security, Container
Runtime Security, MITRE ATT&CK®
for Kubernetes (K8S) and Service
Mesh for Security (Demo Included!)

Nathan Aw
 https://www.linkedin.com/in/awnathan

15 July 2020

https://www.linkedin.com/in/awnathan

This Talk
● Background - Context - Problem Statement
● Microservices 101 & Primer
● Recap - API Security
● Microservices Security

○ Kubernetes (K8S) Security
○ MITRE ATT&CK® for K8S
○ Container Runtime Security

● How to Secure Your K8S - The Cloud Native 4Cs
● Service Mesh for Microservice Security

Opinions/views expressed in the talk are solely my own and do not
express the views or opinions of my employer.

Background - Context - Problem
In the last meetup, we focused on
APIs Security. APIs are the front
door to Microservices. Today we
focus on Microservices Security.

The Microservices Architecture/
Paradigm has special security
considerations due to:

(1) tremendous increase in the
number of components

(2) complex network environments
comprised of various interaction
styles among these components.

The attributes... And the Security
Implications...

Decoupled
Components

Increased
Complexity

Polyglot
Programming/
Architecture

Many components to
track

Many communication
styles (e.g., REST),
protocols (e.g.,
HTTP) and data
formats (e.g., JSON)

https://owasp.org/www-chapter-singapore/assets/presos/Securing_your_APIs_-_OWASP_API_Top_10_2019,_Real-life_Case.pdf

https://owasp.org/www-chapter-singapore/assets/presos/Securing_your_APIs_-_OWASP_API_Top_10_2019,_Real-life_Case.pdf

Who I am. Hello.
● Currently an AppDevSec Digital Solutions Architect and a Full-Stack Developer in the Financial

Services Industry (FSI).
○ First a Full-Stack Cloud-Native Developer, then a Solutions Architect
○ Previously worked in a local bank as a Full-Stack Blockchain Engineer
○ Have Designed, Built, Deployed and Operated > 58 Unique Polyglot Based Production

Grade Microservices (Micro Frontends, Backend for Frontends, Backends) over last 3 years
● Specialties around API, Microservices that enables a Seamless & Frictionless Customer Journey

Experience (CJX)
○ On “Hybrid-Multi” Cloud Native Platforms
○ On API, Microservices Security, Container Runtime Security and MITRE ATT&CK® for

Kubernetes(K8S)
● Technology Stack: Golang, React, Kafka, Spring Boot, NodeJS, Apigee, Kong, Zuul, GraphQL,

Azure Kubernetes Service (AKS), Elastic Kubernetes Service (EKS), Openshift, Service Mesh
(Istio, Linkerd, Envoy), Cloud Foundry, GraphQL and many more…

● Designing, building and operating Scalable, Secure and Robust APIs and Microservices is my
passion!

● https://www.linkedin.com/in/awnathan

https://www.linkedin.com/in/awnathan

What are Microservices? And what are its goals?
• Functional system
decomposed/deconstructed
into manageable and
independently deployable
components

• Functional system
decomposition implies vertical
slicing (versus horizontal
slicing through layer)

• Independent deployability
implies no shared state and
inter-process communication
via HTTP RESTful interface

Independent
deployability is
the objective.

Business Agility
as the outcome.

1 2 3

SOURCE: https://www.researchgate.net/figure/Example-of-Microservice-Architecture_fig1_305881421

https://www.researchgate.net/figure/Example-of-Microservice-Architecture_fig1_305881421

An Illustration of Microservices Architecture (1/2)

SOURCE: https://dzone.com/articles/what-are-microservices-actually

“Enables
developers to
use different
programming
language,
depending on
what they
believe is the
best one for the
specific business
function the
microservice is
built around.”

Independent deployability is
the objective.

https://dzone.com/articles/what-are-microservices-actually

Sample Microservices Architecture (2/2)

SOURCE: https://dzone.com/articles/what-are-microservices-actually

“Allow developers to
build their
applications from
various independent
components which
can easily be
changed, removed
or upgraded without
affecting the whole
application – as is
not the case with
monoliths.”

Independent deployability is
the objective.

https://dzone.com/articles/what-are-microservices-actually

Microservices - Not a silver bullet; Multiple
Tradeoffs including “Perrow-ian” Complexity*.

“Microservices are a great pattern when they map services to disparate teams that
deliver them, or when the value of independent rollout and the value of
independent scale are greater than the cost of orchestration.” - Istio

“Value of
independent rollout
+ value of
independent scale.”

Cost of

Orchestration.

Microservices
can be
considered.

SOURCE: https://en.wikipedia.org/wiki/Conway%27s_law; *https://www.oreilly.com/radar/cloud-adoption-in-2020/;
https://istio.io/latest/blog/2020/istiod/ ; https://en.wikipedia.org/wiki/System_accident

“The ‘Interactive Complexity’ associated with a fundamentally distributed environment
that might result in cascading failure must be the foremost consideration.” - Nathan Aw

https://en.wikipedia.org/wiki/Conway%27s_law
https://www.oreilly.com/radar/cloud-adoption-in-2020/
https://istio.io/latest/blog/2020/istiod/
https://en.wikipedia.org/wiki/System_accident

Recap - Previous OWASP Meetup on API Security
“Independent
deployability” also
implies…

(1) no shared
state - stateless

(2) inter-process
communication
via RESTful
interface (HTTP)

SOURCE: https://owasp.org/www-chapter-singapore/assets/presos/Securing_your_APIs_-_OWASP_API_Top_10_2019,_Real-life_Case.pdf

“The interplay between Microservices Security and APIs Security needs to be very
carefully considered and examined.” - Nathan Aw

https://owasp.org/www-chapter-singapore/assets/presos/Securing_your_APIs_-_OWASP_API_Top_10_2019,_Real-life_Case.pdf

K8S Ingress Controller (Nginx)

Sample (Actual) Polyglot Microservices Architecture - Highly Simplified

API Gateway (Apigee)

Microservice 1 (Node.js)

Microservice 2 (Golang)

Microservice 3 (Ktor)

Microservice 4 (Python)

Microservice 5 (.NET)

Messaging

(Kafka)

HTTPS
REST

Monitoring

Service Mesh (Istio)

Microservice 6 (Helidon)

GraphQL

Legacy

SOAP
XML

K8S

Today’s
Focus

Last
Meetup
Focus

GRPC
over
HTTP/2Websocket

Protobuf over HTTP/2

JMS

JMS

Kafka Go

Kafka .NET

API

Kubernetes Architecture

SOURCE: https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams

https://phoenixnap.com/kb/understanding-kubernetes-architecture-diagrams

Microservices Security (1/4) - Mere Snapshot of the
Sprawling Landscape!

Microservices

Landscape

(A small
snapshot)

Infrastructure

(Container Runtime,
Orchestration,

Messaging, Mesh,
etc)

Programming

Frameworks

(Polyglot)

And many
more...

And many
more...

Node.js, Deno, Golang, Rust, Quarkus, Micronaut and Vue.js are my personal favourites - ping me up to ask why!

Microservices Security (2/4) - Today’s Situation

June 2019:
Kubectl cp
Vulnerability

August 2019 -
Severe Kubernetes
HTTP/2
Vulnerabilities

Oct 2019 -
Kubernetes API
server DoS
Vulnerability

March
2018: etcd
credentials
leak

SOURCE: Sysdig “Securing Kubernetes in Production”;
https://arstechnica.com/information-technology/2018/03/thousands-of-servers
-found-leaking-750-mb-worth-of-passwords-and-keys/

April 2019:
vulnerabilities
discovered in
Envoy

https://arstechnica.com/information-technology/2018/03/thousands-of-servers-found-leaking-750-mb-worth-of-passwords-and-keys/
https://arstechnica.com/information-technology/2018/03/thousands-of-servers-found-leaking-750-mb-worth-of-passwords-and-keys/

Microservices Security (3/4) - Today’s Situation

June 2019:
Kubectl cp
Vulnerability

Oct 2019 -
Kubernetes API
server DoS
Vulnerability

SOURCE: https://www.cvedetails.com/cve/CVE-2019-1002101/; https://github.com/kubernetes/kubernetes/issues/83253

A Recursive
YAML
Bomb!

https://www.cvedetails.com/cve/CVE-2019-1002101/
https://github.com/kubernetes/kubernetes/issues/83253

Microservices Security (4/4) - Today’s Situation
Vulnerabilities or
Misconfigurations

Best Practices not
in place and/or
adhered to.

Lack of Monitoring -
Undetected
Container Breaches

SOURCE: Sysdig 2019 Container Usage Report

52% container images fail
scans with high severity*
that leaves applications
exposed to attacks*

On average, 21
containers per node are
running as root, opening
the door for container
breakouts*

5 min container lifespan
requires purpose-built
tools for audit and
incident response*

MITRE ATT&CK®
Framework for Kubernetes
ATT&CK - Adversarial Tactics, Techniques, and
Common Knowledge

For the uninitiated, Kubernetes(K8S) is an open
source container scheduling and orchestration
system.

MITRE ATT&CK® Framework for Kubernetes

SOURCE: https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/

Our
Focus
Today

ATT&CK - Adversarial Tactics, Techniques, and Common Knowledge

https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/

Using
Cloud
Credentials

MITRE ATT&CK® Framework for Kubernetes
ATT&CK - Adversarial Tactics, Techniques, and Common Knowledge

If your cloud credentials (e.g., AWS Root User or IAM User) are
compromised, your whole Kubernetes cluster is at risk!

MITRE ATT&CK® Framework for Kubernetes
ATT&CK - Adversarial Tactics, Techniques, and Common Knowledge

Kubeconfig
File

A kubeconfig file is a file
used to configure access
to Kubernetes when used
in conjunction with the
kubectl command line tool
(or other clients).

Execution
into
Container

MITRE ATT&CK® Framework for Kubernetes
ATT&CK - Adversarial Tactics, Techniques, and Common Knowledge

Demo
(Deploy Golang
+ Nginx) on K8S

Attackers who have permissions, can run malicious commands in containers in the
cluster using exec command (“kubectl exec”). In this method, attackers can use
legitimate images, such as an OS image (e.g., Ubuntu) as a backdoor container, and
run their malicious code remotely by using “kubectl exec”.

MITRE ATT&CK® Framework for Kubernetes
ATT&CK - Adversarial Tactics, Techniques, and Common Knowledge

SSH Server
Running
inside
Container

In Kubernetes, administrators should limit service exposure and apply Kubernetes Network
Policies to restrict network traffic and prevent unintended access to a container that is
running an SSH server. Pod configurations should also be hardened to prevent SSH
servers from being added at runtime.

SSH server running inside container SSH server that is running inside a container may be
used by attackers. If attackers gain valid credentials to a container, whether by brute force
attempts or by other methods (such as phishing), they can use it to get remote access to the
container by SSH.

SOURCE: https://www.stackrox.com/post/2020/07/protecting-against-kubernetes-threats-chapter-2-execution/

https://www.stackrox.com/post/2020/07/protecting-against-kubernetes-threats-chapter-2-execution/

MITRE ATT&CK® Framework for Kubernetes (2/3)

SOURCE:

SOURCE: http://127.0.0.1:62823/api/v1/namespaces/kube-system/services/http:kubernetes-dashboard:/proxy/

Access
Kubernetes
Dashboard

The Kubernetes
dashboard is a
web-based UI that is used
for monitoring and
managing the Kubernetes
cluster. The dashboard
allows users to perform
actions in the cluster
using its service account
(kubernetes-dashboard)
with the permissions that
are determined by the
binding or cluster-binding
for this service account.
Attackers who gain
access to a container in
the cluster, can use its
network access to the
dashboard pod.
Consequently, attackers
may retrieve information
about the various
resources in the cluster
using the dashboard’s
identity.

http://127.0.0.1:62823/api/v1/namespaces/kube-system/services/http:kubernetes-dashboard:/proxy/

How to Secure Your K8S - The Cloud Native 4Cs

https://kubernetes.io/docs/concepts/security/overview/

1. The 4C's of Cloud
Native security. You can
think about security in
layers.

2. The 4C's of Cloud
Native security are
Cloud, Clusters,
Containers, and Code.

Container ClusterCode Cloud

https://kubernetes.io/docs/concepts/security/overview/

How to Secure Your K8S Infrastructure

SOURCE: https://kubernetes.io/docs/concepts/security/overview/;
https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

Cloud
(Infrastruc
ture)Area of Concern for Kubernetes

Infrastructure
Recommendation

Network access to API Server
(Control plane)

All access to the Kubernetes control plane is not allowed publicly on
the internet and is controlled by network access control lists restricted
to the set of IP addresses needed to administer the cluster.

Network access to Nodes
(nodes)

Nodes should be configured to only accept connections (via network
access control lists)from the control plane on the specified ports, and
accept connections for services in Kubernetes of type NodePort and
LoadBalancer. If possible, these nodes should not be exposed on the
public internet entirely.

Kubernetes access to Cloud
Provider API

Each cloud provider needs to grant a different set of permissions to
the Kubernetes control plane and nodes. It is best to provide the
cluster with cloud provider access that follows the principle of least
privilege for the resources it needs to administer. The Kops
documentation provides information about IAM policies and roles.

https://kubernetes.io/docs/concepts/security/overview/
https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

How to Secure Your K8S Infrastructure

SOURCE: https://kubernetes.io/docs/concepts/security/overview/;
https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

Area of Concern for Kubernetes
Infrastructure

Recommendation

Access to etcd
Access to etcd (the datastore of Kubernetes) should be limited to the
control plane only. Depending on your configuration, you should
attempt to use etcd over TLS. More information can be found in the
etcd documentation.

etcd Encryption Wherever possible it's a good practice to encrypt all drives at rest, but
since etcd holds the state of the entire cluster (including Secrets) its
disk should especially be encrypted at rest.

Cloud
(Infrastruc
ture)

https://kubernetes.io/docs/concepts/security/overview/
https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

How to Secure Your K8S Cluster

SOURCE: https://kubernetes.io/docs/concepts/security/overview/;
https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/ ;
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Cluster

Area of Concern for Kubernetes
Infrastructure

Recommendation

RBAC Authorization (Access to
the Kubernetes API)

Role-based access control (RBAC) is a method of regulating access
to computer or network resources based on the roles of individual
users within your organization.

RBAC authorization uses the rbac.authorization.k8s.io API group to
drive authorization decisions, allowing you to dynamically configure
policies through the Kubernetes API.

Authentication Users access the API using kubectl, client libraries, or by making
REST requests. Both human users and Kubernetes service
accounts can be authorized for API access.

https://kubernetes.io/docs/reference/access-authn-authz/controlling-
access/

https://kubernetes.io/docs/concepts/security/overview/
https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

How to Secure Your K8S Cluster

SOURCE: https://kubernetes.io/docs/concepts/security/overview/;
https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

Cluster

Area of Concern for Kubernetes
Infrastructure

Recommendation

Application secrets management
(and encrypting them in etcd at rest)

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

https://kubernetes.io/docs/concepts/policy/pod-security-policy/

https://kubernetes.io/docs/tasks/configure-pod-container/quali
ty-service-pod/

Network Policies

Quality of Service (and Cluster
resource management)

Pod Security Policies

https://kubernetes.io/docs/concepts/services-networking/netw
ork-policies/

https://kubernetes.io/docs/concepts/services-networking/ingress/
#tlsTLS For Kubernetes Ingress

https://kubernetes.io/docs/concepts/security/overview/
https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

Sample AWS EKS Cluster Configuration

https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

AWS EKS Security Best Practices

SOURCE: https://aws.github.io/aws-eks-best-practices/iam/

1. Controlling Access to EKS Clusters
2. Don't use a service account token for authentication
3. Employ least privileged access to AWS Resources
4. Use IAM Roles when multiple users need identical access to the

cluster
5. Employ least privileged access when creating RoleBindings and

ClusterRoleBindings
6. Make the EKS Cluster Endpoint private
7. Restrict the containers that can run as privileged
8. Do not run processes in containers as root
9. Never run Docker in Docker or mount the socket in the container

10. Create minimal images
11. And many more…

https://aws.github.io/aws-eks-best-practices/iam/

Container
How to Secure Your K8S Container

Container Vulnerability Scanning and
OS Dependency Security

Restrict the containers that can run as
privileged

As part of an image build step, you should scan your containers
for known vulnerabilities.

Area of Concern for Kubernetes
Infrastructure

Recommendation

Sign container images to maintain a system of trust for the
content of your containers.

When constructing containers, consult your documentation for
how to create users inside of the containers that have the least
level of operating system privilege necessary in order to carry out
the goal of the container

Image Signing and Enforcement

Disallow privileged users

As mentioned, containers that run as privileged inherit all of the
Linux capabilities assigned to root on the host. Seldom do
containers need these types of privileges to function properly.
You can reject pods with containers configured to run as
privileged by creating a pod security policy.

Container Runtime Security - Image Scanning
Image scanning: The Docker security scanning process typically includes:

• Checking the software packages, binaries, libraries, operative system files and more
against well known vulnerabilities databases. Some Docker scanning tools have a
repository containing the scanning results for common Docker images. These tools can be
used as a cache to speed up the process.

 • Analyzing the Dockerfile and image metadata to detect security sensitive configurations
like running as privileged (root) user, exposing insecure ports, using based images tagged
with “latest” rather than specific versions for full traceability, user credentials, etc.

• User defined policies, or any set of requirements that you want to check for every image.
This includes software packages blacklists, base images whitelists, whether a SUID file has
been set, etc.

Compromised
Images in
Registry

CoreOS/Clair: An open source project for the static
analysis of vulnerabilities in application containers
(currently including appc/Rkt and Docker).

Restrict the containers that can run as
privileged - Rule:MustRunAsNonRoot

https://kubernetes.io/docs/concepts/po
licy/pod-security-policy/#users-and-gr
oups

Container

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups

How to Secure Your Application Code on
K8S

Code

Practice Writing Secure By Design
Code!

Access over TLS only

If your code needs to communicate by TCP, perform a TLS handshake with the
client ahead of time. With the exception of a few cases, encrypt everything in
transit. Going one step further, it's a good idea to encrypt network traffic
between services. This can be done through a process known as mutual or
mTLS which performs a two sided verification of communication between two
certificate holding services.

This recommendation may be a bit self-explanatory, but wherever possible
you should only expose the ports on your service that are absolutely essential
for communication or metric gathering.

Limiting port ranges of
communication

SOURCE: https://kubernetes.io/docs/concepts/security/overview/

Static Code Analysis Most languages provide a way for a snippet of code to be analyzed for any
potentially unsafe coding practices. Whenever possible you should perform
checks using automated tooling that can scan codebases for common
security errors. Some of the tools can be found at:
https://owasp.org/www-community/Source_Code_Analysis_Tools

https://kubernetes.io/docs/concepts/security/overview/

Service Mesh - Definition
“A service mesh, like the open source project Istio, is a way to control how
different parts of an application share data with one another. Unlike other systems
for managing this communication, a service mesh is a dedicated infrastructure
layer built right into an app.” - Red Hat

“A service mesh is a configurable, low‑latency infrastructure layer designed to
handle a high volume of network‑based interprocess communication among
application infrastructure services using application programming interfaces
(APIs).” - Nginx

Service Mesh To Help Improve Security Posture

Traffic observability that Service
mesh offers, combined with
external traffic profiling and analysis
tools, enables security-related
traffic auditing and monitoring for
detection and investigation of
network behavior anomalies.

Fine-grained role-based
access control at the
application layer network
protocol can be used for
micro-segmentation, further
enhancing users’ abilities to
limit which services interact
and in what ways.

Configurable authentication policies
and secure naming information
ensure traffic authorization at the
transport layer.

Service mesh traffic can be
automatically encrypted
with mutual endpoint
authentication, using
mTLS.

Authenticates workloads’ identities
and issues and manages
certificates for them used in
creating the mesh connectivity.

SOURCE: https://www.alcide.io/service-mesh-security/

https://www.alcide.io/service-mesh-security/

Service Mesh - Linkerd and Istio

Service Mesh - Automatic mTLS

SOURCE: https://linkerd.io/

SOURCE: https://istio.io/

Service Mesh is not a panacea nor silver
bullet to all the potential security ills and
pitfalls. Vigilance and Defense-in-Depth
Approach is still needed!

https://linkerd.io/
https://istio.io/

What’s Next + Final Words
● Multi Cloud Reality - K8S

Clusters spanning across
multi-cloud

The Swiss Cheese Model /
Defense-in-Depth Approach Sorely
Needed - No one size fits all

- “Know all your assets, well. Know
them well. (especially all the
component in the asset. E.g., the
ETCD in K8S, Golang) and secure
em’ all!

- “Secure by Design” Application:
Secure code is the best code.
Secure by design means that security
is baked into your software design
from the beginning.

Feel reach out to me @ https://www.linkedin.com/in/awnathan

● Currently an AppDevSec Digital Solutions Architect and a Full-Stack Developer in the Financial Services

Industry (FSI)
○ First a Full-Stack Developer, then a Solutions Architect
○ Previously worked in a local bank as a Full-Stack Blockchain Engineer
○ Have Designed, Built, Deployed and Operated > 58 Unique Polyglot Based Production Grade

Microservices (Micro Frontends, Backend for Frontends, Backends) over last 3 years
● Specialties around API, Microservices that enables a Seamless & Frictionless Customer Journey

Experience (CJX)
○ On “Hybrid-Multi” Cloud Native Platforms
○ On API, Microservices Security, Container Runtime Security and MITRE ATT&CK® for

Kubernetes(K8S)
● Technology Stack: Golang, React, Kafka, Spring Boot, NodeJS, Apigee, Kong, Zuul, GraphQL, Azure

Kubernetes Service (AKS), Elastic Kubernetes Service (EKS), Openshift, Service Mesh (Istio, Linkerd),
Cloud Foundry and many more…

● Building Scalable, Secure and Robust APIs and Microservices is my passion!
● https://www.linkedin.com/in/awnathan
● Opinions/views expressed in the talk are solely my own and do not express the views or opinions of my

employer.

https://www.linkedin.com/in/awnathan
https://www.linkedin.com/in/awnathan

References/Sources
Oreilly - Container Security: Fundamental Technology Concepts that Protect
Containerized Applications

https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204.pdf

https://skyao.gitbooks.io/microservice-collection/content/master/Andreas-Schroed
er/static/microservice-architectures.pdf

https://owasp.org/www-chapter-singapore/assets/presos/Securing_your_APIs_-_O
WASP_API_Top_10_2019,_Real-life_Case.pdf

https://aws.github.io/aws-eks-best-practices/iam/

https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204.pdf
https://skyao.gitbooks.io/microservice-collection/content/master/Andreas-Schroeder/static/microservice-architectures.pdf
https://skyao.gitbooks.io/microservice-collection/content/master/Andreas-Schroeder/static/microservice-architectures.pdf
https://owasp.org/www-chapter-singapore/assets/presos/Securing_your_APIs_-_OWASP_API_Top_10_2019,_Real-life_Case.pdf
https://owasp.org/www-chapter-singapore/assets/presos/Securing_your_APIs_-_OWASP_API_Top_10_2019,_Real-life_Case.pdf
https://aws.github.io/aws-eks-best-practices/iam/

References/Sources
https://developer.okta.com/blog/2020/03/23/microservice-security-patterns

https://www.infoq.com/podcasts/web-security-hack-anatomy/

https://developer.okta.com/blog/2020/03/23/microservice-security-patterns
https://www.infoq.com/podcasts/web-security-hack-anatomy/

